

Welcome to Tripal Test Suite’s documentation!

TripalTestSuite is a composer package that handles
common test practices such as bootstrapping Drupal
before running the tests, creating test file, and creating
and managing database seeders (files that seed the database
with data for use in testing).

Support

Please visit our issues queue on Github [https://github.com/statonlab/TripalTestSuite/issues] for any questions, issues or contribution.

License

TripalTestSuite is licensed under GPLv3 [https://github.com/statonlab/TripalTestSuite/blob/master/LICENSE].

Contents:

	Installation
	Automatic Set Up

	Forcing initialization

	Creating Tests

	Running Tests

	TripalTestCase

	Database Seeders
	Creating Database Seeders

	Using Database Seeders

	Running Seeders

	Retrieving Seeder Data

	Using DevSeed for Quick Biological Data Seeding

	Factories
	Defining Factories

	Using Factories

	Overriding Defaults

	Using DB Transactions to Automatically Rollback Database Changes

	Publishing Tripal Entities

	Testing HTTP Requests
	Available HTTP Testing Methods

	User Authentication

	Helper Methods
	Silently Testing Printed Output

	Assertions and Methods

	Access Private and Protected Properties and Methods of Objects

	Accessing Private and Protected Methods

	Accessing Properties

	Environment Variables

	Upgrading TripalTestSuite

Installation

Within your Drupal module path (e,g sites/all/modules/my_module), run the following.

composer require statonlab/tripal-test-suite --dev

Automatic Set Up

This module will automatically configure your tests directory, PHPUnit bootstrap files, and travis
continuous integration file as well as provide an example test and an example database seeder to
get you started.

From your module’s directory, execute:

You may specify the module name or leave it blank.
When left blank, the name of the current directory will be used as the module name.
./vendor/bin/tripaltest init [MODULE_NAME]

This will
- Set up the testing framework by creating the tests directory, phpunit.xml and tests/bootstrap.php
- Create an example test in tests/ExampleTest.php
- Create a DatabaseSeeders folder and an example seeder in tests/DatabaseSeeders/UsersTableSeeder.php
- Create DevSeedSeeder.php in DatabaseSeers. See the [DevSeed section] to learn more about automatically populating the database with biological data.
- Create an example .env file.
- Create .travis.yml configured to use a tripal3 docker container to run your tests

You can now write tests in your tests folder. To enable continuous
integration testing, push your module to github and enable Travis CI [https://travis-ci.org/].

Forcing initialization

To force replacing files that tripaltest have perviously generated, you can use the
--force flag. You will need to confirm this flag by typing y and hitting enter.

./vendor/bin/tripaltest init --force

Creating Tests

Using tripaltest, you can create test files pre-populated with all the requirements.
To create a new test, run the following command from your module’s root directory:

Creates a test file called ExampleTest.php in the tests folder
./vendor/bin/tripaltest make:test ExampleTest

Creates a test file called ExampleTest.php in tests/Features/Entities
This will automatically detect and configure the namespace of your script
./vendor/bin/tripaltest make:test Features/Entities/ExampleTest

Warning

You should not include tests/ in your path, nor should you specify a file extension.

Warning

Test names should end with Test for phpunit to recognize them.

Running Tests

Tripal Test Suite auto installs PHPunit as part of it’s dependencies in composer.json.
Therefore, running tests in Tripal Test Suite is done via phpunit as such:

./vendor/bin/phpunit

The command above, will read your phpunit.xml and runs the tests accordingly.

TripalTestCase

Test classes should extend the TripalTestCase class. Once extended, bootstrapping
Drupal and reading your .env file is done automatically when the first test is run.

namespace Tests;

use StatonLab\TripalTestSuite\TripalTestCase;

class MyTest extends TripalTestCase {
}

Attention

If you define a setUp method within a test class, be sure to call parent::setUp!

Database Seeders

Database seeders are also supported in TripalTestSuite. They give you the ability
to create reusable seeders that can be run using the tripaltest command line tool.

Creating Database Seeders

DB seeders can also be created automatically using tripaltest:

./vendor/bin/tripaltest make:seeder ExampleTableSeeder

The above command will create ExampleTableSeeder.php in tests/DatabaseSeeders/ pre-populated
with the necessary namespace, methods and properties.

Using Database Seeders

DB seeders support two important methods, up() and down(). The up()
method is used to insert data into the database while the down() method
is used to clean up the inserted data. The following is an example of a Seeder class.

<?php

namespace Tests\DatabaseSeeders;

use StatonLab\TripalTestSuite\Database\Seeder;

class UsersTableSeeder extends Seeder
{
 /**
 * Seeds the database with users.
 */
 public function up()
 {
 $new_user = [
 'name' => 'test user',
 'pass' => 'secret',
 'mail' => 'test@example.com',
 'status' => 1,
 'init' => 'Email',
 'roles' => [
 DRUPAL_AUTHENTICATED_RID => 'authenticated user',
],
];

 // The first parameter is sent blank so a new user is created.
 user_save(new \stdClass(), $new_user);
 }
}

Running Seeders

You can also run the seeder manually by using the static seed() method. For example, within a test class,
you can run $seeder = UsersTableSeeder::seed() which runs the up() method and returns an initialized seeder
object. If you are using the DBTransaction trait, the data will be automatically rolled at the end of each test
function.

The other option is to run it using tripaltest as follows

run all available seeders
tripaltest db:seed

Run a specific seeder by providing the class name
tripaltest db:seed ExampleSeeder

Attention

Running the seeder manually in a test function with DBTransaction enabled,
means that the data is available only to that function and nothing else. However,
running it using tripaltest makes it always available unless explicitly deleted.

Retrieving Seeder Data

If your seeder returns any data, you can obtain the returned record by manually running
the seeder in your test. See below for an example:

<?php
// Seeder Class
class MySeeder extends Seeder {
 public function up() {
 // Generate some data.
 $data = db_query(...);

 return $data;
 }
}

// Test Class
class MyTest extends TripalTestCase {
 public function testExample() {
 $seeder = new MySeeder();
 $data = $seeder->up();

 // Run some tests using the generated data
 // ...
 }
}

Using DevSeed for Quick Biological Data Seeding

Tripal Test Suite ships with a default seeder called DevSeedSeeder. This seeder provides a quick
and automated way of seeding your database with biological data such as organisms, mRNAs, BLAST
annotations and InterProScan annotations. The data in the default seeder is obtained
from Tripal DevSeed [https://github.com/statonlab/tripal_dev_seed], which is a developer
mini-set of biological data.

DevSeed uses factories and is therefore only appropriate for testing and development and should not be run on a production site.

Attention

DevSeedSeeder.php becomes available after running tripaltest init. The init command will
not override existing files unless you specify the --force flag so it it’s safe to run it to get only
the DevSeeder.

By default, the DevSeed comes with all sub-loaders disabled. To run the DevSeed seeder, you first have to configure it by uncommenting the type of data you want seeded. Then, you can run the seeder using tripaltest db:seed DevSeedSeeder.

	Open DatabaseSeeders/DevSeedSeeder.php

	You’ll notice a few commented properties in the top of the file.

	Uncomment and modify the properties to your need.

	Carefully follow the instructions in this section. All loaders require an organism as well, but some are dependent on previous loaders.

	Next, run tripaltest db:seed DevSeedSeeder

	If the seeder runs successfully, you’ll be able to see all the records in your Chado database.

The records provided by DevSeed are not published to your site as entities. You can do that
by adding $this->publish('CHADO_TABLE') at the end of the up() method of the DevSeedSeeder.
Replace CHADO_TABLE with the name of the table such as feature for mRNAs and analysis for analyses.
Or, if you prefer, you can use the Tripal admin interface to publish the records.

Factories

DB factories provide a method to populate the database with fake data. Using factories, you
won’t have to run SQL queries to populate the Database in every test. Since they are reusable,
you can define one factory for each table and use them across all tests.
Usage example:

Generates 100 controlled vocabularies.
@return an array of vocabularies
$controlledVocabs = factory('chado.cv', 100)->create()

Factories should only be used for testing and development purposes.

Defining Factories

Factories live in tests/DataFactory.php. If you don’t have that file, create it. Note that this file
is auto created with tripaltest init.

Example DataFactory file:

<?php

use StatonLab\TripalTestSuite\Database\Factory;

Factory::define('chado.cv', function (Faker\Generator $faker) {
 return [
 'name' => $faker->name,
 'definition' => $faker->text,
];
});

As shown in the example above, using Factory::define(), we can define new factories.
The define method takes the following parameters:

	Parameter

	Type

	Description

	Example

	$table

	string

	The table name preceded with the schema name if the schema is not public

	chado.cv or node

	$callback

	callable

	The function that generates the array. A Faker\Generator instance is automatically passed to the callable

	see above for example

	$primary_key

	string

	OPTIONAL The primary key for the given table. Primary keys auto discovered for CHADO tables only. If the factory wasn’t able to find the primary key, an Exception will be thrown

	nid or cv_id

Using Factories

Once defined, factories can be used in test files directly or in database seeders.
Usage:

Create a single CV record
$cv = factory('chado.cv')->create();
echo "$cv->name\n";

Create 100 CV records
$cvs = factory('chado.cv', 100)->create();

foreach ($cvs as $cv) {
 echo "$cv->name\n";
}

Overriding Defaults

Sometimes you need to override a column to be a static predictable value. The create() method accepts an array of values
to override the faker data with. Example:

Let's make sure the cvterm has a specific cv id
$cv = factory('chado.cv')->create();
$cv_term = factory('chado.cvterm', 100)->create([
 'cv_id' => $cv->cv_id,
])

The above example creates 100 cv terms that have the same cv_id.

Factories should only be used for testing and development purposes. This is because they are recursive and create the records linked via foreign key. They do this even if you override the default for the linked record.

Using DB Transactions to Automatically Rollback Database Changes

Using DB transactions cleans up the database after every test by rolling back
the database to the original state before the test started. Therefore, anything
added to the database in one test function will not be available for the next
function. If you’d like data to be available for all of the tests, see database
seeders [https://github.com/statonlab/TripalTestSuite#database-seeders] above.

To activate DB Transactions, simply add the DBTransaction trait to your test class:

namespace Tests;

use StatonLab\TripalTestSuite\TripalTestCase;
use StatonLab\TripalTestSuite\DBTransaction;

class MyTest extends TripalTestCase {
 use DBTransaction;
}

The trait will automatically activate DB transactions and rollback the database when the test is finished.

Warning

If the code you are testing requires a transaction, Postgres
will fail since it does not support nested transactions.

Publishing Tripal Entities

We provide an easy way to convert your chado records into entities. This is the equivalent of
publishing Tripal content using the GUI.

Publishing records is possible in both database seeders and directly in the test class.

The following publishes all features in chado.feature if they have not been published yet.

// Get the cvterm id of mRNA
$cvterm = chado_select_record('cvterm', ['cvterm_id'], ['name' => 'mRNA'])[0];

// Create 100 mRNA records
$features = factory('feature', 100)->create(['type_id' => $cvterm->cvterm_id]);

// Publish all features in chado.feature
$this->publish('feature');

The following publishes only the given feature ids:

// Get the cvterm id of mRNA
$cvterm = chado_select_record('cvterm', ['cvterm_id'], ['name' => 'mRNA'])[0];

// Create 100 mRNA records
$features = factory('feature', 100)->create(['type_id' => $cvterm->cvterm_id]);

// Get the ids of our new features
$feature_ids = [];
foreach ($features as $feature) {
 $feature_ids[] = $feature->feature_id;
}

// Publish only the given features
$this->publish('feature', $feature_ids);

The previous examples create mRNA entities.

Attention

An mRNA bundle must already be available before running this script.

Testing HTTP Requests

TripalTestSuite provides a comprehensive HTTP testing methods. It allows you to call
site urls and check that your Drupal menu items are working as expected.

For example, the following tests that the homepage is accessible and that the name of the
website is present in the response.

public function testHomePage() {
 // Send a GET request
 $response = $this->get('/')

 // Verify the HTTP response code is "200 OK" and that the site name is visible
 $response->assertStatus(200)
 ->assertSee('My Site');
}

Available HTTP Testing Methods

The following table describes all available HTTP methods in any test class that
extends TripalTestSuite:

	name

	parameters

	Description

	Return

	$this->get()

	$url string The url to calln**$params** array Query parameters.n**$headers** array Additional HTTP headers

	Sends a GET request

	TestResponse

	$this->post()

	$url string The url to calln**$params** array Form request parameters.n**$headers** array Additional HTTP headers

	Sends a POST request

	TestResponse

	$this->put()

	$url string The url to calln**$params** array Query parameters.n**$headers** array Additional HTTP headers

	Sends a PUT request

	TestResponse

	$this->patch()

	$url string The url to calln**$params** array Query parameters.n**$headers** array Additional HTTP headers

	Sends a PATCH request

	TestResponse

	$this->delete()

	$url string The url to calln**$params** array Query parameters.n**$headers** array Additional HTTP headers

	Sends a DELETE request

	TestResponse

The TestResponse returned from the HTTP requests, provide the following set of assertion methods:

	name

	Parameters

	Description

	
	
	

	$response->assertStatus()

	$code int

	Verify the returned HTTP status code is equal to $code

	
	
	

	$response->assertSee()

	$content string

	Verify the given string is present in the returned response body (i

	e HTML

	JSON

	etc)

	$response->assertJsonStructure()

	$structure array

	Verifies that the returned JSON matches the given structure (see below for example)

	
	
	

	$response->assertSuccessful()

	none

	Verify the returned HTTP status code is between 200 and 299

	which are HTTP’s successful response codes

	
	

User Authentication

Authenticating a user with TripalTestSuite is very simple using the actingAs method. When
authenticating a user with TripalTestSuite, the user is automatically signed out by the end
of each test method, which guarantees that your other tests are using the anonymous user
unless you specifically tell it otherwise.

public function testExample() {
 // Authenticate the superuser who has an id 1
 $this->actingAs(1);

 // Verify that the user is the admin user
 global $user;
 $this->assertTrue(1 === $user->uid);
}

Attention

The actingAs method can take a user id to authenticate or a Drupal user object.

Helper Methods

TripalTestSuite provides a set of helper methods to automate tedious aspects of testing.

Silently Testing Printed Output

Since tests should run “silently”, i.e. without printing output to the screen, we’d have to create
an output buffer to collect printed strings into a variable. In PHP, this can be done as such:

// Supress tripal errors
putenv("TRIPAL_SUPPRESS_ERRORS=TRUE");
ob_start();

// Run the call
echo "testing";
$output = ob_get_contents();

// Clean the buffer and unset tripal errors suppression
ob_end_clean();
putenv("TRIPAL_SUPPRESS_ERRORS");

However, TripalTestSuite provides a silent() method that automates this process, provides helpful assertions
and supports larger strings. Example usage:

$output = silent(function() {
 echo "testing";
});
$output->assertSee('testing'); // true!

Warning

This method has a maximum string size to avoid memory leaks. The size is set in PHP’s ini file
as output_buffering, which by default is set to 4KB. If you would like to collect larger strings, you must
adjust your PHP settings.

Assertions and Methods

The silent method returns a SilentResponse which provides the following methods.

	Method

	Arguments

	Description

	assertSee()

	$value mixed

	Asserts that the given value is present in the suppressed printed output

	assertReturnEquals()

	$value mixed

	
Asserts that the given value equals the returned value from the called function

	assertJsonStructure()

	$strcture array
``$data`` array Optional

	Asserts that the given stricture matches that of the suppressed printed output

	getContent()

	None

	Get the suppressed printed content as a string

	getReturnValue()

	None

	Get the returned value from the called function

Examples

$output = silent(function() {
 drupal_json_output(['key' => 'value']);
 return true;
});

$output->assertSee('value')
 ->assertJsonStructure(['key'])
 ->assertReturnEquals(true);

You can also call methods directly in the Callable function:

// Assume we have the following function
function tripal_print_message($message) {
 echo $message;
}

$output = silent(function() {
 tripal_print_message('tripal test suite');
});
$output->assertSee('test');

// Get the output as a string
$rawOtput = $output->getContent();

Access Private and Protected Properties and Methods of Objects

TripalTestSuite provides a reflect() method that accepts an object
and makes all of the properties and methods public and available
for testing. Assume we have the following class:

class PrivateClass
{
 private $private;

 public function __construct($private = 'private')
 {
 $this->private = $private;
 }

 protected function myProtected()
 {
 return 'protected';
 }

 private function privateWithArgs($one, $two)
 {
 return $one.' '.$two;
 }
}

Because of the functions and properties of the class are private or protected, we
normally would not be able to access any of them. However, we can force access
using the reflect helper. See below for an examples.

Accessing Private and Protected Methods

// Pass an initialized class to the reflect method
$myObject = new PrivateClass();
$privateClass = reflect($myObject);

// Accessing protected methods
$value = $privateClass->myProtected();
$this->assertEquals('protected', $value);

// Accessing private methods with arguments
$value = $privateClass->privateWithArgs('one', 'two');
$this->assertEquals('one two', $value);

Accessing Properties

// Pass an initialized class to the reflect method
$myObject = new PrivateClass();
$privateClass = reflect($myObject);

$this->assertEquals('private', $privateClass->private);

Environment Variables

You can specify the Drupal web root path in tests/.env.

tests/.env
BASE_URL=http://localhost
DRUPAL_ROOT=/var/www/html
FAKER_LOCALE=en_US

This allows TripalTestSuite to bootstrap the entire Drupal framework and make it available in your tests.

Upgrading TripalTestSuite

Since we are using composer to manage releases, running composer update should update
all your dependencies to the latest version. However, you need to be aware of
how composer deals with versioning [https://getcomposer.org/doc/articles/versions.md].

Upgrading to a major versions (e.g, from 1.5.0 to 2.0.0), will require that you change
the specified version in your composer.json file. Upgrading minor version (e.g, 1.0.0 to 1.1.0)
can be made automatic by specifying 1.* as your tripal-test-suite version.

Index

 _static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Tripal Test Suite’s documentation!

 		
 Installation

 		
 Automatic Set Up

 		
 Forcing initialization

 		
 Creating Tests

 		
 Running Tests

 		
 TripalTestCase

 		
 Database Seeders

 		
 Creating Database Seeders

 		
 Using Database Seeders

 		
 Running Seeders

 		
 Retrieving Seeder Data

 		
 Using DevSeed for Quick Biological Data Seeding

 		
 Factories

 		
 Defining Factories

 		
 Using Factories

 		
 Overriding Defaults

 		
 Using DB Transactions to Automatically Rollback Database Changes

 		
 Publishing Tripal Entities

 		
 Testing HTTP Requests

 		
 Available HTTP Testing Methods

 		
 User Authentication

 		
 Helper Methods

 		
 Silently Testing Printed Output

 		
 Assertions and Methods

 		
 Access Private and Protected Properties and Methods of Objects

 		
 Accessing Private and Protected Methods

 		
 Accessing Properties

 		
 Environment Variables

 		
 Upgrading TripalTestSuite

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

